Fabrication of Alginate beads

References:

- AB Yeatts, CN Gordon, and JP Fisher. Formation of an Aggregated Alginate Construct in a Tubular Perfusion System. Tissue Engineering Part C, Methods. 17: 1171-1178 (2011). (PubMed)
- BNB Nguyen, H Ko, RA Moriarty, JM Etheridge, and JP Fisher. Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue. Tissue Engineering Part A. 22: 263-271 (2016). (Pubmed)

Reagents/Solutions

**Maintain pH for solutions at 7.4

- Alginic acid sodium salt \rightarrow Sigma Aldrich
- HEPES
 NaCl
- CaCl₂
- EDTA (dissolve in PBS)
- PBS
- Hyaluronic acid sodium salt from F. Strepto-coccus Equi Species (-20 degC) → Sigma Aldrich

	MW	Desired	Calculated weight (g) for desired total volume						
Reagent	[g/mol]	[M]	100	200	300	400	500	1000	
HEPES	260.29	0.025	0.65	1.30	1.95	2.60	3.25	6.51	
NaCl	58.44	0.15	0.88	1.75	2.63	3.51	4.38	8.77	
		0.1	1.11	2.22	3.33	4.44	5.55	11.10	
CaCl ₂	110.99	0.3	3.33	6.66	9.99	13.32	16.65	33.30	
		0.05	1.86	3.72	5.58	7.44	9.31	18.61	
		0.1	3.72	7.44	11.17	14.89	18.61	37.22	
		0.15	5.58	11.17	16.75	22.33	27.92	55.84	
EDTA	372.24	0.2	7.44	14.89	22.33	29.78	37.22	74.45	

Table 1: Calculated weight of reagents (g) for desired concentrations and volumes.

** NOTE: Always pH solutions to 7.4. Filter if necessary.

Preparing x-amt % w/v alginate solution (can vary % w/v):

- 1. Pour desired volume of buffer solution with 0.025M HEPES and 0.15M NaCl into beaker.
- 2. Weigh **x**-amt g of alginic acid and add into beaker.
- 3. Heat (3) and stir (6) solution for 30 minutes. Break up clumps if necessary.
- 4. Cool for 5-10 minutes and pour alginate solution into a 50 mL Falcon tube.
- 5. Sterile filter solution using a Steriflip/syringe filter.
- 6. Store in 4degC for max 3-5 days.

Table 2	2: Alginate	weight	amounts (g)	for des	sired	percentage.
---------	-------------	--------	-----------	----	---------	-------	-------------

	Calculated weight (g) for desired total volume (mL)						
% Alginate	50	100	150	200			
0.8	0.4	0.8	1.2	1.6			
1.2	0.6	1.2	1.8	2.4			
2.0	1.0	2.0	3.0	4.0			

Making alginate beads:

- 1. Fill a beaker with ~ 10 mL of 0.1M CaCl₂ for each 1mL of alginate solution. Place beaker on stir plate.
- 2. Stir solution with a stir bar. Make sure that a funnel is not formed.
- 3. Suck up alginate into a syringe with a needle (22 gauge) slowly to avoid air bubbles.
 - a. If bubbles are present, tap the syringe gently
 - b. You can change the size of the bead by changing the needle gauge
- 4. Inject alginate into CaCl₂ solution. Beads will form automatically
- 5. Wait ~15 minutes for beads to stabilize.
- 6. Remove stir bar with tweezers.
- 7. Remove beads from solution with measuring spatula (spray down with EtOH well, before use).
- 8. Place beads into desired location (well plates).
- 9. Rinse beads with DMEM (1x).
- 10. Repeat 1-7 to make more beads. Remember to use new CaCl₂ solution.

****** If you are encapsulating cells within the alginate bead always use aseptic techniques (i.e., biohood, autoclave instruments):

- 1. Determine # of cells (X) that are required to obtain desired cell density. *EQN*: X cells/mL x 1 mL/30 beads = cell density (cells/bead)
- 2. Pellet cells from cell culture.
- 3. Resuspend cell pellet with desired alginate concentration using an electric pipette.
- 4. Now follow the 'making alginate beads' procedure.
- 5. Incubate cell-beads with $\sim 2mL$ of media (+ 10% FBS) in 12 well plate.
- 6. Change media every 2 days.

NOTE: While waiting for the beads to stabilize set up next alginate-cell solution.

** To remove cells from alginate bead:

- 1. Aspirate media from well plates.
- 2. Pipet 2 mL of 100mM EDTA (pH 7.4) to each well for ~25-30 minutes in the incubator.
- 3. Put total solution volume in a 15mL centrifuge tube.
- 4. Rinse well plates with 1 mL of PBS.
- 5. Add in additional PBS (~4mL) to make solution less viscous.
- 6. Centrifuge cells and solution at 1000xg for 8 minutes at a level of 2 increase and 9 decrease.
- 7. Isolate cells by remove supernatant and blot tubes dry.
- 8. Resuspend cell pellet with 10uL of PBS.
- 9. Aliquot into microcentrifuge tubes.
- 10. Start assays.