Printing Considerations: Cells, Biologics

NIH Center for Engineering Complex Tissues (CECT) June 8, 2018

> Bhushan Mahadik, Ph.D. Assistant Director, CECT University of Maryland

۲

CECT Conter for Engineering Complex Tissues

Biofabrication window

CECT Engineering Complex Tissues

Important Bioink properties for extrusion

Impact of extrusion conditions

Impact of extrusion conditions

CECT Engineering Complex Tosses

Impact of extrusion conditions

Cell viability in printed fibrin

Slides courtesy Ms. Piard, TEBL

Impact of extrusion conditions

Considerations: Bioink

Considerations: Bioink

Material properties might alter due to a variety of reasons

Slides courtesy Dr. Guo, TEBL

CECT Center for Engineering Complex Tissues

Considerations: Bioink

Considerations:	Bioink

Printing of bioactive moieties

Homogenous immobolization

Heterogenous immobolization

(i)

For temporal release of gentamycin sulfate
 and deferoxamine

- Blend electrospinning of polyvinyl alcohol 124-gentamycin sulfate (PVA–GS) fibers
- 3D printing for gelatin–sodium alginate struts

Workshop, Rice University

Takeaways

- Several factors to be considered when
 - choosing the appropriate bioink Printing procedure and impact on cells
 - Incorporating biological cues
- · Post-processing impacts functionality just as much as pre- and during-
- Alternatives available, but have to be tailored to specific applications

Printing strategies and examples

NIH Center for Engineering Complex Tissues (CECT) June 8, 2018

> Bhushan Mahadik, Ph.D. Assistant Director, CECT University of Maryland

-

CECT Center for Engineering Complex Tissues

Choosing a 3D Printing Technique

6

3D Printed Vascular Network

Bioreactor Scale-up

BNB Nguyen, et al., Tissue Engineering Part A. 22: 263-271 (2016).

۲

CECT Center for Engineering Complex Tissues

Bioreactor Scale-up

2.5 L osteogenic media flowing at 240 ml/min 250 mL of 2% alginate for cell encapsulation within 7200 alginate beads 1000mL of 2% alginate to fill empty space in culture chamber with 30,000 alginate beads Approximately 800 x10⁶ hMsCs Sterilizing air filter on media flask to increase gas exchange

BNB Nguyen, et al., Tissue Engineering Part A. 22: 263-271 (2016).

Bioreactor Scale-up

BNB Nguyen, et al., Tissue Engineering Part A. 22: 263-271 (2016).

Volume of construct is 200 cm³

2.5 L osteogenic media flowing at 240 ml/min 250 mL of 2% alginate for cell encapsulation within 7200 alginate beads 1000mL of 2% alginate to fill empty space in culture chamber with 30,000 alginate beads Approximately 800 x 10⁶ MMSC Sterilizing air filter on media flask to increase gas exchange

6

CECT Complex Transmer

3D Printed Vascular Grafts

 Grafts printed from poly(propylene fumarate) using a direct-light processing and crosslinked with UV light

 Mechanical properties similar to vessels used in autologous grafts

Human Saphenous Vein 6.7 ± 1.3 2.2 ± 0.2 1.9 ± 0.1		Modulus (MPa)	Ultimate Tensile Strength (MPa)	Suture Retention Strength (N)
	Human Saphenous Vein	6.7±1.3	2.2 ± 0.2	1.9 ± 0.1
Human Femoral Artery 9.0 to 12.0 1.0 to 2.0 2.0 ± 1.2	Human Femoral Artery	9.0 to 12.0	1.0 to 2.0	2.0 ± 1.2
3D Printed Graft 11 to 176 1 to 32 0.3 to 2.4	3D Printed Graft	11 to 176	1 to 32	0.3 to 2.4

AJ Melchiorri, et al., Advanced Healthcare Materials. 5: 319-325 (2015).

Custom-made, Multi-material platforms

Custom-made, Multi-material platforms

Custom-made, Multi-material platforms

Hybprinter

CECT Center for Engineering Complex Tissues

Custom-made, Multi-material platforms

Novel biomaterials and techniques

TR&D1: Bioreactors

10

TR&D2: Live Cell Patterning

The ITOP can concurrently print synthetic biodegradable polymers and cell-laden hydrogels in a singe tissue construct with clinically applicable size, shape, and structural integrity for clinical applications

- · Generation of 3D freeform shaped constructs with precision

 Multiple cell types, biomaterials, drugs
- High strength constructs
- · Gel and polymeric materials (~12)
- Printing resolution
 - Cell printing: ≥ 50 μm
 Structural material printing: ≥ 2 μm

- TR&D3: Complex Heterogeneous Scaffolds
- Develop a multi-material 3D printing system for the fabrication of complex bone and osteochondral scaffolds Tunable material compositions Patterned loading of growth factors
- Multi-material 3D printing system translatable to lower-cost 3DP systems
- Spatial deposition of transitional gradients (pore, ceramics, GFs) can mimic zonal organization
- Spatial manipulation of signaling properties to recapitulate tissue growth and regeneration in terms of composition and strength

Center for **ØEC**I Engineering **Complex Tissues** A NIBIB / NIH Biomedical Technology Resource Center Aiming to Grow the 3D Printing & Bioprinting Community John Fisher (University of Maryland): 3D Printed Bioreactors for Dynamic Cell Culture Antonios Mikos (Rice University): Bioprinting for Complex Scaffold Fabrication Anthony Atala & James Yoo (Wake Forest University): Bioprinting for Cell-Laden Constructs Center Collaborators: Jason Burdick (University of Pennsylvania), Elizabeth Cosgriff-Hernandez (Texas A&M University), Ali Khademhosseini (Brigham and Women's Hospital/Harvard), Helen Lu (Columbia University), David Mooney (Harvard University), Silvia Muro (University of Maryland), Anthory Ratcliffe (Synthasome), Molly Shoichet University of Tortstorik), Johna't emendif (Beorgia Tech-Kimory University), Rocky Tuan (University of Techersity) Michael Yaszemski (Mayo Clinic), and Yunzhi Yang (Stanford University)

Acknowledgements

an's Natis

