

The 3D Printing Process: How Do I *Actually* Make This?

Max J. Lerman

Department of Materials Science and Engineering, University of Maryland Surface and Trace Chemical Analysis Group, National Institute of Standards and Technology Center for Engineering Complex Tissues, University of Maryland

June 8th, 2017

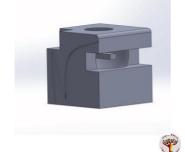
	Overview		
		Test	CAD
		Bioreactor scaffolds	
	Fabricate		Material
CECT	K	Printer	

When is 3D printing appropriate

- Rapid prototyping
 Quick turn around

 - Small volumesHighly customizable

Hours to days Dozens 'Soft' design



When is 3D printing appropriate

- Rapid prototyping
 Quick turn around

 - Small volumes
 Highly customizable
- Early design decisions
 Internal features

 - Overhangs Indents
 - Texture
 - Orientation

CECT

When is 3D Printing Appropriate

- Rapid prototyping
 - Quick turn around
 - Small volumes
 - · Highly customizable
- Early design decisions
 - Internal features
 - Overhangs
 - Indents
 - Texture Orientation
- Paper->CAD->Manufacture->Use
 - Cost
 - Time Frustration

CECT

Software Functionality Magics STL

Filament Placement
 Layer generation

G-Code

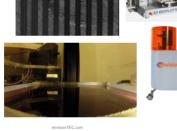
How to Make a Model

Printing Orientation

- Effect of orientation of print design on its properties
 Mechanical strength

 - Structure stability
 Print accuracy

VS.

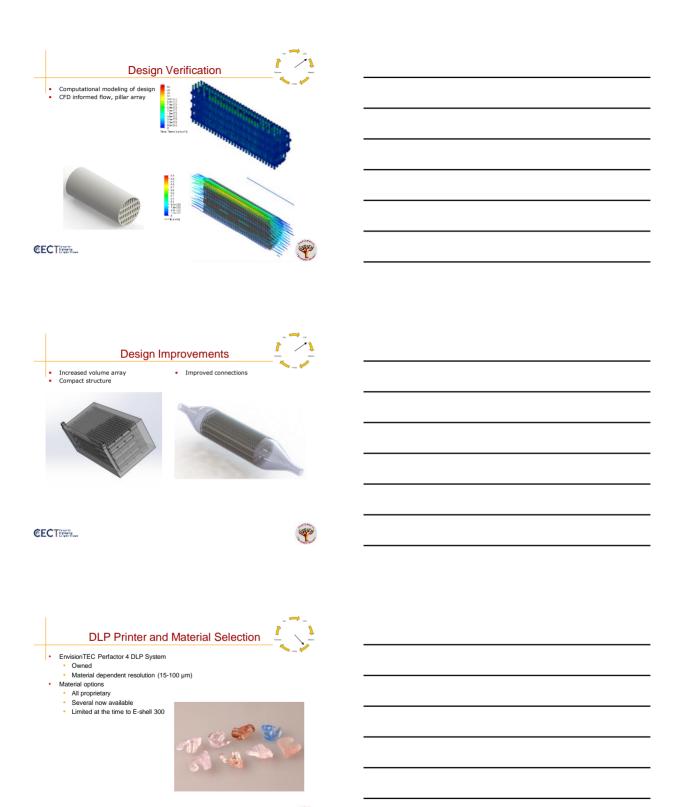


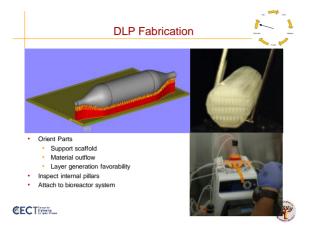
CECT

Printer Selection

- FDM
- Powder Bed
- SLA/DLP
- SLS/SLM/EBM
- LOM (laminated)

CECT


Material Selection


- Often dictated by printer selection (done in tandem)
- What is the FUNCTION of the part?
- · What are the down stream applications/intended use?
 - Solubility, cleaning, cell contacting, etc.
- Cost
- Available materials
 - Ceramics
 - Metals Hard Plastics
 - Soft Plastics
 - Hydrogels
- Materials



Example - DLP Bioreactor CAD **CECT** Design: Background Design Criteria Perfusion flow Non-cytotoxic CompactControl of shear stress Clear Impactful 3D geometry Design Utilized Pillared array Round – to fit inside tubing DLP Technology – E-Shell 300 **CECT CAD** Generation Imaging Cell expansion Application based design Single layer for imaging studies Multilayered for flask replacement **CECT**

Example – Biomimetic Shaped Implant

Background-Motivation

- Implantable craniofacial repair material

 High structural complexity

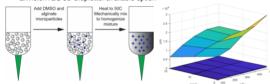
 Non-cytotoxic

 Biodegradable

 Vascularization
- Biomimetic Driven
 CT

STL Generation

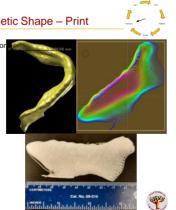
- Use CT scan from NIH 3D Print Exchange
 Remove excess, fragments
- Remove excess, fragments Cut part down to size



Biomimetic Shape - Material Tuning

- Develop new material
 Compounding method

 - · Printing method
 - Repeatability
- EnvisionTEC 3D Bioplotter available option


CECT

Biomimetic Shape - Print

- Process STL
 - Remove unwanted section
- · Orient for printer
- · Slice print file
 - Material properties
 - Overall shape
 - · Generate G-code
- Post processing
- Test
 - Elution data
 - · Yield and modulus
 - Cytotoxicity

EECT

Advisors Dr. John P. Fisher

- Dr. Greg Gillen

- Navein Arumugasaamy

- James Coburn
 Dr. Ting Guo
 Megan Kimicata
 Dr. Bhushan Mahadik

- Charlotte Piard
 Javier Navarro Rueda
 Dr. Marco Santoro
 Sarah Van Belleghem
- Dr. Guang Yang Justine Yu

Acknowledgements Undergraduate Researchers

- Anthony Chiu
 Anushka Gerald
- Zachary Goddard Madelyn Golding James Fookes

Financial Support from NIST MSE-2014-01

CECT

The 3D Printing Process: How Do I Actually Make This?

Max J. Lerman

Department of Materials Science and Engineering, University of Maryland Surface and Trace Chemical Analysis Group, National Institute of Standards and Technology Center for Engineering Complex Tissues, University of Maryland

