
Cell and Biologics Printing

3D Printing Workshop Sarah Van Belleghem

WELCOME 3D PRINTING WORKSHOP

Sarah Van Belleghem/ PhD Candidate

- 4th year PhD candidate Bioengineering Department
- Graduated from MIT in Mechanical Engineering (2015)
- Very interested in progressing advances pertaining to the women's health world.

Conclusions

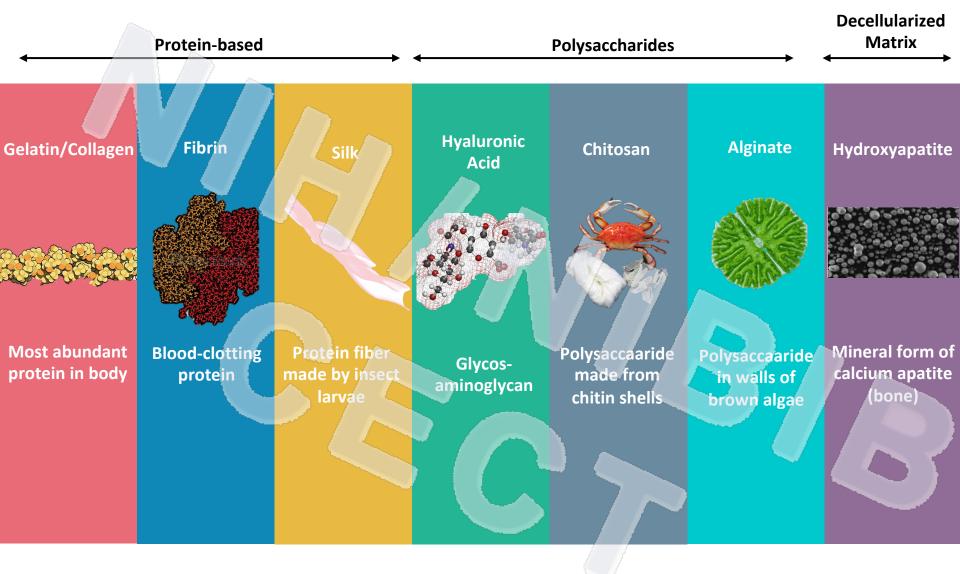
Project Development

Unique Architecture is Necessary

No other forms of traditional fabrication can create desired object.

Central Biological Question

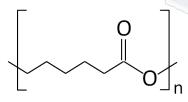
Must be investigated, either cellular mechanism/furthering knowledge of fundamental biology.


Feasible Fabrication

The chosen 3D printing technology should be able to create desired object (materials, size/shape)

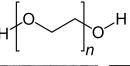
Apparent Clinical Need

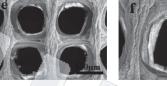
Gives value to your research and a necessary personal connection to drive focused research efforts.



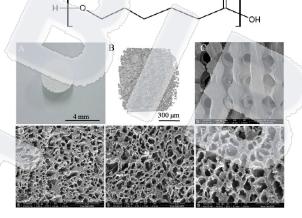
Bioinks-Synthetics

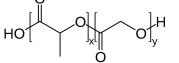
Polymers are easy to synthesize, display controllable degradable properties, and experience minimal inflammatory response


Polycaprolactone



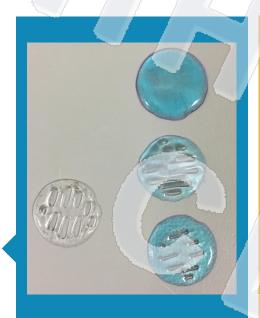

Increasing Stiffness


Polyethylene glycol



Poly(L-Lactide-co-ε-caprolactone)

Poly(lactic-co-glycolic) Acid



Impact of Material Properties

MATERIAL PROPERTIES

Some materials are incompatible with extrusionbased printing (low viscosity, Newtonian fluid)

BIO-COMPATIBILITY

Some materials can be cytotoxic and thus should not be used in tissue regenerative practices

Z-AXIS MISALIGNMENT

If strand deposition is not accurate, the printed part will become 'off' by a layer, and all proximate layers. This renders an ill-printed part

Printing Limitations

Can

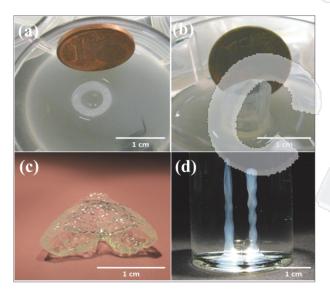
Robust synthetic, biocompatible scaffolds that promote tissue formation

Soft hydrogels that promote water absorption

Live Cell Delivery (bioink encapsulation)

Can't

Full Complex and Functioning Organ


Fully Vascularized Grafts

Immune Response

A wide array of tissues can be regenerated with 3D printed constructs

Aorta

Fig. 7 Robotic and manual printing of 3D constructs by using an agarose bioink under fluorocarbon. (a) Top and (b) side view of printed cell-laden constructs. (c) 3D construct mimicking a vascular bifurcation that was printed while submerged in perfluorotributylamine. (d) Printed cylinders without cells.⁹² Reprinted with permission Copyright IOP Publishing, 2013.

Bone

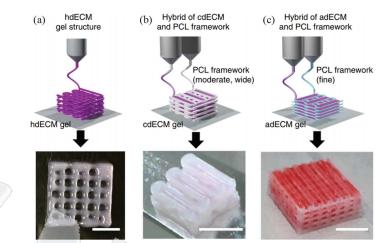


Fig. 8 Utilizing various dECM bioinks for bioprinting 3D tissue constructs. (a) Heart tissue construct was printed with only heart dECM (hdECM). (b) Cartilage and adipose tissues were printed with cartilage dECM (cdECM) and (c) adipose dECM (adECM), respectively, and in combination with PCL framework (scale bars, 5mm).²⁹ Reprinted with permission Copyright Nature Publishing Group, 2014.

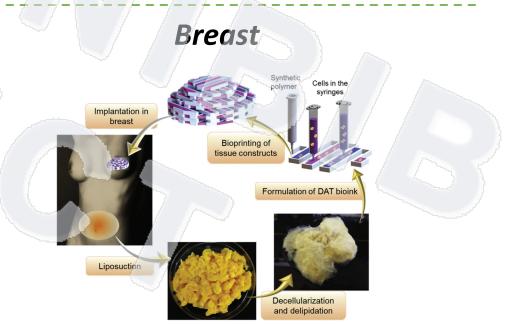


Fig. 9 Adipose tissue obtained by surgery and used as a bioink after a decellularization process for soft tissue reconstruction.¹⁰⁰ Reprinted with permission Copyright Elsevier, 2015.

Intricate process in developing 3D print project

- Materials (natural and synthetic)
 - Print properties
- Printing limitations
- Examples

Questions?