Tissue Engineering and Regenerative Medicine

NIH Center for Engineering Complex Tissues (CECT) June 8, 2018

> Bhushan Mahadik, Ph.D. Assistant Director, CECT University of Maryland

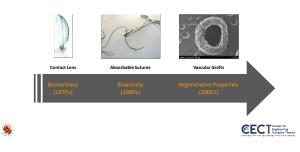
۲

CECT Engineering Complex Tissues

Regenerative Medicine

- Process of creating living, functional tissues to repair or replace tissue or organ function
- Translational research for bench-to-bedside therapies
- Relatively long history
 Transplants: Bone Marrow, Kidney in the 1950s.
 Autografts, Allografts, Xenografts

Addressing a biomedical need


- Large tissue defects
- Scar tissue formation
- Limited innate healing capacity
- Other pathologies that limit desired regeneration

1

Biomaterials in Medicine

Tissue Engineering

• <u>1988</u>

200 "Tissue Engineering" is the application of principles and methods of engineering and life sciences toward fundamental understanding of structure-function relationships in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain, or improve tissue function. – Skalak R, Fox CF, eds., Tissue Engineering, 1988

• 1993

 Tissue engineering is an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function. – Langer R, Vacanti JP, "Tissue Engineering", Science 1993 May 14;260:920-6.

٠

CECT Engineering Complex Tissues

Tissue Engineering

 Transplantation of chondrocytes into a biodegradable, ear-shaped mold, followed by implantation under the skin of a mouse (subcutaneous)

CECT Engineering Complex Tissues

Tissue Engineering

- Regeneration
 Replacement of lost tissue with the tissue itself
 Initiate regeneration where it is not normally observed
 Cartinge defects
 Large (critical size) bone defects

Repair
 Replacement of lost tissue with a functional substitute
 Enhance the rate of repair where it is seen
 Nearly any tissue defect

Replacement
 Replacement of a missing cell population
 Red blood cells in a blood transfusion
 Bone marrow cells in marrow replacement

-

CECT Engineering Complex Tissues

Tissue Engineering Challenge

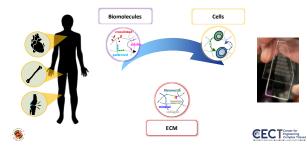
· Capturing native heterogeneity and complexity

Importance of the Biomaterial
 Biocompatible, Biodegradable

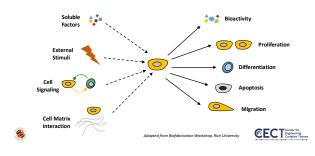
 Natural vs. Synthetic Chemical, Biomechanical, Structural similarity

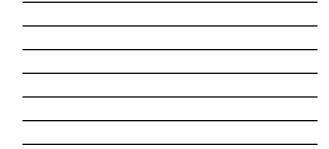
Biomanufacturing limitations

1

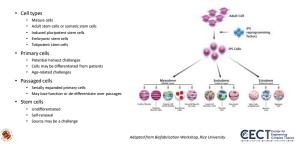


0


100 k Er


> 0 0

Tissue Engineering 'Triad'



Cells

Cells

Extracellular Matrix (ECM)

- Composed of various proteins (collagen, fibronectin, laminin etc.) and proteoglycans
- Scaffold material that provides support for cell growth and function
 Growth, differentiation, bioactivity
- Deliver appropriate biomolecular and biomechanical cues

Scaffold Properties

- · Bulk properties that correlate to the native tissue
 - Mechanical
 Architectural
 - Chemistry
- Microstructural properties that dictate cell response
 - Pore size
 Cell infiltration and surface mechanics
 - Porosity
 Dictates mechanical properties, transport phenomenon Fiber orientation

 Dictates cell migration and growth

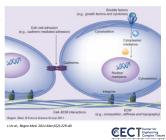


Hydrogels

- · Polymeric chain network dispersed in an aqueous medium
 - · Retains a high fraction of water compared to the polymer

- Individual polymer chains can be cross-linked to assemble and form a network
 - Thermal
 - pH
 - Chemical Photo-sensitive

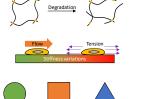
Scaffold examples


Natural	Synthetic
Collagen	Polyethylene glycol (PEG) and derivatives
Gelatin	Polycaprolactone (PCL)
Alginate	Polylactic acid and derivatives
Fibrin	Poly (propylene fumarate)
Hyaluronic Acid	Polyacrylamide
Decellularized ECM	

Biomolecules

- Communication and molecular signaling conduit
- Cytokines
- Growth Factors and Receptors
- Cell adhesion molecules

Biomolecules: Function-specific


Abbreviation	Tissues treated	Representative function	
Ang-1	blood vessel, heart, muscle	blood vessel maturation and stability	
Ang-2	blood vessel	destabilize, regress and disassociate endothelial cells from surrounding tissues	
FGF-2	blood vessel, bone, skin, nerve, spine, muscle	migration, proliferation and survival of endothelial cells, inhibition of differentiation of embryonic stem cells	
BMP-2	bone, cartilage	differentiation and migration of osteoblasts	
BMP-7	bone, cartilage, kidney	differentiation and migration of osteoblasts, renal development	
EGF EPO	skin, nerve nerve, spine, wound healing	regulation of epithelial cell growth, proliferation and differentiation promoting the survival of red blood cells and development of precursors to red blood cells.	
HGF	bone, liver, muscle	proliferation, migration, differentiation of mesenchymal stem cells	
IGF-1	muscle, bone, cartilage, bone liver, lung, kidney, nerve, skin	cell proliferation and inhibition of cell apoptosis	
NGF	nerve, spine, brain	survival and proliferation of neural cells	
PDGF-AB (or -BB)	blood vessel, muscle, bone, cartilage, skin	embryonic development, proliferation, migration, growth of endothelial cells	
TGF-α	brain, skin	proliferation of basal cells or neural cells	
TGF-β	bone, cartilage	proliferation and differentiation of bone-forming cells, anti- proliferative factor for epithelial cells	
VEGF	blood vessel	migration, proliferation and survival of endothelial cells.	
	Adapted from Biofabrication Workshop, Rice I	University Lee, et al. J.R. Soc. Interface. 2011 CECT Complex University	

Other factors

• Time • Matrix degradation, remodeling

- Physicochemical
 - Shear forces, mechanical stresses, cyclic tension
- Topography
 - Curvature, roughness

Applications of TERM

- Promising *in vitro* platform to interrogate *in vivo* biology
 Wealth of research exploiting TE capabilities
- Several clinical applications to date

CECT Conter for Engineering Complex Tissues

Applications of TERM

Dermal regeneration

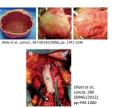
Brand	Scaffold material	Cells
Dermgraft® (Advanced Biohealing)	PGA, PLA, Silicon	Fibroblasts
Apligraf [®] (Organogenesis)	Collagen	Keratinocytes, Fibroblasts
Orcel® (Ortec Inc.)	Collagen sponge	Keratinocytes, Fibroblasts
Laserkin®, Hyalograft® (Fidia Adv. Bioploymers)	Hyaluronic acid	Keratinocytes, Fibroblasts

Integra ® Skin grafts

Applications of TERM

- Various bone/cartilage products
- Efforts to combine the right cellular, molecular and structural cues

Brand	Scaffold material	Application
Collagraft * (Nuecoll Inc.)	Collagen, HA, B- TCP	Subchondral support
ChondroMimetic [™] (TiGenix NV)	Collagen, calcium phosphate	Osteochondral
Gel-One [®] (Zimmer Biomet)	Hyaluronic acid	Osteoarthritis
TruGraft [™] (Osteobiologics)	PLGA granulate	Bone void filler



Applications of TERM

- Pioneering work by WFIRM on Bladder tissue engineering
 (2006)
 Cells seeded on a biodegradable bladder-shaped scaffold made of
 collagen/PGA composite
- Tissue Engineered Tracheal replacement (2012)
 Donor trachaeal scaffold with multiple cell/biomolecule
 stimulations

On-going work with various other organs: cornea, blood vessels, liver etc.

In a lot of cases, despite initial success, there was no long-term improvement

Takeaways

- Important components of Tissue Engineering
 Cells, Biomolecules, Scaffolds
- · Several parameters that are known to influence final outcome
- Right balance between perfectly mimicked *in vivo* system vs. key elements that answer important questions

۲

-

CECT Center for Engineering Complex Tissues