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The Human Body: A Dynamic Bioengineering Problem
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@ Center for
& Engineering
Complex Tissues



Role of Bioreactors in Tissue Engineering

Biomimicking the physiological dynamics of our body for more reli % dies
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Traditional Bioreactors

Spinner Flask

Wurm et al.

Rotating Wall

Bartis et al.

Perfusion Bioreactors

Pros Easy to use and maintain Easy to use and'maintain Can do continuous process
Culture cell suspensions and Can generate microgravity Internal and external mixing
scaffolds conditions Controlled shear forces

Cons Difficult to use in mass Not feasible for large scaffolds Difficult to maintain sterility

Maria Joao De Jesus Florian Maria Wurm, “Medium and Process Optimization for High Yield, High Density Suspension
Cultures: From Low Throughput Spinner Flasks to High Throughput Millilitre Reactors”, Bioprocess International 2009

production
Complex fluid mechanics
Only external mixing

Only external mixing
Potential scaffold damage

Several moving parts
Non-trivial sample handling
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Need for Tissue-Specific Bioreactors

* Engineering design for tissue specificity
— Geometry

— Size
— Shape

— Mechanical stimuli
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Compression
Shear stress

Tension
Rotation

Electrical stimulation
Pulsatile

Blood vessels
Skin
Barriers (e.g. blood-

brain; placenta)

Large scaffolds

High vs low pressure flow
Stratified nutrient exchange

Media isolation vs. controlled
permeation

Efficient nutrient exchange
Efficient vascularization
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3D Printing for Bioreactor Design ¢
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Microphysiological BRs: Geometry control
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10 ml/min

Lembong et al., Tissue Eng Part A. 2018 Dec;24(23-24):1715-1732.
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Microphysiological BRs: Geometry control
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Cell Patterning
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Engineering Large Surface Area to Volume Ratios

Significant reduction in operational unit volume

* Extracellular vesicles (EVs) as therapeutic vectors

» Address EV scalability using a bioreactor system
approachwvia 3D-printed scaffolds

Significant increase in EV production with bioreactor

. : I Day 1 Day 3 100~
3D pr/nted bioreactor 10% ns ki =t
—
L
Jr-*“ll_ dmL/min (~ 2-5 Cm3) # qp1 sx% IR
. = ns ns
" IX" - Hf g " . 1 '
|ﬂ|EI . =n 3 1u'll}
Parasialic ) L H
P = 10
Maeda
FESErYoIr D
1“0 r T T 8‘0& 6\0& \';’ (\0\ (}'o‘ \'b“\’&. s{\o\b (}_o(
ot ,"d"' g L < e ‘?? < s ‘0@'
ol o QP
Outlet A e OmM EtOH  100mM EtOH
S S——

Patel et al., Acta Biomaterialia, 95: 236-244



Bioreactors for Large Scaffolds

Scale up using the Tubular Perfusion System (TPS) bioreactor

Media
Reservoir

Nguyen et al. Tissue Engineering: Part A, Vol. 22, No. 3, 2016

Compressing a 20,000 cm? culture area into a

2800 cm?3 volume for hMSC culture

Top-half of an adult human femur (200 cm?3)
20-fold increase over previously reported
volumes
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Bioreactors for Mechanical Stress
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Chambered Bioreactors for Tissue/Organ Cu &t\v@\@

 Dr.Brenda O zs nesota)
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Dual Chambered Bioreactors for Stratified CR{{N’JS:
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Skin Tissue Engineering . %
. 15(\(\

Epidermis

Basement
membrane

Hypodermis/Fat
scaffold
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Dual Chambered Bioreactors for Stratified Cultures

3D printed scaffolds to mediate transport
across the bioreactor

:

Line Media B
Rotary pump Reservoir Reservoir
Media B Media A

Navarro et al., Biotechnology and Bioengineering. 2019;116:3253-3268

Single continuous

Flat scaffolds,
HCD membrane

75% curved scaffolds,  25% curved scaffolds,

scaffolds

HCD membrane

HCD membrane

Time: 0 min

0.5 min

30 min

CECT

60 min
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Chambered Bioreactors for TlssueIOrgan Cu &r\vg\@

m Osteochondra { Engmeermg

e Study of gradient tissues via co-culture
 Distinct microenvironments to promote function-
specific differentiation of cells
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Leveraging CFD for Bioreactor Design Optimization

» Useful to estimate parameters prior to
bioreactor design
Flow Stress? Pressure drop?

. Computational fluid dynamics (CFD) methods
for'design optimization
— Size

Nutrient depletion?
Temperature drop?

Bioreactor

— Geometry

Toxin accumulation? pH?

— Flow rate
Oxygen concentration? — Cell density
— Media volume
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Leveraging CFD for Bioreactor Design Optimization

* Engineering pore size and vascular
geometry for O, diffusion through a 3D
scaffold
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Leveraging CFD for Bioreactor Design Optl ((z\a‘j\grn

* Validating nutrient availability under flow
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Leveraging CFD for Bioreactor Desigh Optimiz

* Investigating transport properties within the bioreactor
chamber

Navarro et al., Biotechnology and Bioengineering. 2019;116:3253-3268
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Advanced Bioreactors in Regenerative Med &\@e*

Large-scale, cost-effective, and reproducible production of cells or %
cellular products (\

Beyond the ‘black box’ %\(\
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