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3D Bioprinting Workflow

Reverse Engineering

Medical 3-D CAD 3-D CAM 3-D
imaging * Mirroring » Slicing bioprinting
« CT scan * Filling + Tool path system
* MRI geperaton + Layer-by-layer
* Motion program process
generation
DICOM format STL format Text-based command list
Medical imaging 3-D CAD model Visualized motion 3-D printing 3-D bioprinted
(CT, MR, etc.) program process tissue product

DICOM format STL format Text-based command list
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Integrated Tissue-Organ Printing (ITOP) System

ITOP can concurrently print synthetic biodegradable polymers and cell-laden hydrogels in a
single tissue construct with clinically applicable size and shape with structural integrity for
tissue engineering applications

Generation of 3D freeform shaped
constructs with precision

Multiple cell types, biomaterials, drugs
High strength constructs:
Hydrogels and polymers (~12) Sy v D

Printing resolution: “‘\iéﬁ 22

Cell printing: > 50 ym

Structural polymer printing: > 2 ym g w
Center for
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Ear, mandible bone
— Nat Biotech 2016,
Biofabrication 2019
Biomaterials 2020

——

Trachea — Biofabrication 2016

Bone — 3DP 2017

Cardiac muscle — Acta Biomater 2018

Meniscus — Chem Mater | |

Skeletal muscle — Nat 2020

Biotech 2016, Sci Rep
2018, Biomaterials 2019,
Nat Commun 2020

Skin — Sci Rep 2019,
Tissue Eng A 2020 )
MTJ — Biofabrication 2015 Kidney — Adv Health Mater, 2019

3D Bioprinting - Bioinks

A major challenge for tissue and organ engineering is the production of 3D
biomimetic, cellular tissue constructs of clinically relevant size and shape with
structural integrity

3D bioprinting can print cell-laden hydrogels to manufacture complex, multi-
cellular living tissue constructs that mimic the structure of native tissues

Bioinks provide the biological microenvironment needed for the successful
delivery of cells and biomaterials to discrete locations within 3D structures

To improve and enhance the significance and innovation of this approach, it is
critical to develop standardized bioink systems
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Hydrogel-based Extrusion Bioprinting

Required properties of bioinks

Dispensing module
(pneumatic or syringe)

| I
l l l I. Formulation & cell encapsulation

Cell-laden I Inth . -h Il

bioink - In the syringe: homogeneous ce

\ suspension
N~

Nozzle

(10-400 pm)

Ill. Through the nozzle: extrudability,
uniformity, shear thinning (thixotropy)

Cell-laden bioink

IV. Crosslinking: structural integrit;
& construct elasticity /71

V. In culture: Dimensional stability,
cell phenotype & differentiation

Culture medium

Gillispie et al. Biofabrication. 2020

Working Definitions of Printability

Extrudability
o How difficult is it to extrude :2‘
the bioink? o
o Pressure required to g
extrude the bioink at a &
given flowrate
Extrusion
uniformity/accuracy Traditional
o Are the extrusion lines hydrogel
straight and uniform?

o Length of an extrusion

>

line’s edge relative to a
perfectly uniform filament

Structural integrity
o Does the bioink hold its o Non-toxic
shape after extrusion?

formation

CECT

Biological properties

Biological properties

o Supporting cell growth
o Height of a printed structure o Maintaining cell phenotype
o0 Accelerating tissue

Center for
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Determination of Printing Parameters

1% KdECMMA

2% KJECMMA 3% KJdECMMA

Pneumatic pressure (kPa)

2500 —— 1% KJECMMA
= 2% KJECMMA
3% KJECMMA

g
t

Filament width { um)
g 2

3 40 s 6 T0
Pneumatic pressure (kPa)

Ali et al., Adv Healthcare Mater 2019

1 layer 6 layers

KdJECM
without
formulation
[ [~

1 layer 6 layers. 16 layers

KJECMMA &
with
formulation

KJECM
with
formulation
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Hydrogels Available for Bioprinting

» Collagen

+ Fibrinogen
 Hyaluronic acid (HA)
* Sodium alginate

+ Gelatin

» Methyl cellulose

+ Gellan gum

» Chitosan

+ Agarose

+ Xantan gum
 Poly(ethylene glycol) (PEG)

m-lydrogels \

\ Pluronic F127 /

Quantitative printability measurement is
needed

o Most often, printability is described qualitatively

o Rheological measurement for the extrudability
and shear-thinning property of materials

o Yet, predicting the final shape of a printed
construct have been inconclusive

o The relationships between rheology and other
aspects of printability are not fully understood -
rheology cannot yet be used as a proxy for
printability

o Direct measures of printability are currently
needed in order to confirm the suitability of
bioinks for specific bioprinting applications.

CECT

Center for
Engineering
Complex Tissues

Strategy of Bioink Development

[ Bioink preparation >

Measurement tools

2> QOutcomes J

Rheaclogical test

Printing of artifact
structures

Viscoelastic (G',
G7), yielding,
recovery, & shear

Yoo 1 100
Angular frequency (radis)

_ Tube height, wall

thickness, Pr, pore
area, filamentwidth,
turn accuracy,
deflection angle,
etc.

1

Quantification by
image analysis

thinning ( Determination of

printability
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Bioink Artifact for Printability Measurement

Printing patterns Printing outcomes Printability measurement
| ed” | Memwwes | couiation |
+ Stack multiple 'Height Direct measurement
= Width Direct measurement
- Stackmultiple i e
|3y?f5 External radius = r,/x
+ Arc accuracy “Internal radius n= AA"“
S-layer tube .
(top and side view) “Wallthickness T=r-n
] o+ n)/z
adial accuracy = X 100%
Crosshatch Top  + Form 2
horizontal Pr Pr= P/m/\p
pOtSs] 8Area of pores Direct measurement
‘ %4 of broken pores Direct measurement
Crosshatch (top view) 1% of filled pores Direct measurement
4-angled Top + Shaptums  'Filament width Direct measurement
pattern o w2
+ Single Stnndarq deviation of _ |Ew —wW)
filament fllamentyidty i N, The artifact possesses
dimensions P
o [GRIDY; excellent ease of use, printing
4-angled pattern *Uniformity ratio Ve— 2 . . .
(top view) Ly in less than 10 min, using
Tum angle Direct measurement fa
- - i T e e less than 0.4 mL of'blomk,
Overhang  Side + Spangaps  *Deflection at midpoint  Direct measurement and an automated image
Overhang collapse Collapse unsupported i = sin-1(P, .
(side view) g Gz V"Angle of deflection B = sin"!(%/g 5) analysis process.
*8Spanning su te  Direct
o Center for
Gillispie et al., under review > g’;ﬂ’;ﬁ:;"}igssues

Selected Testing Bioink Formulations
nting conditions
Selection criteria Layer
Pressure Flowrate Feedrate i Nozzle
it . eight n
(kPa) (mm3/min) (mm/min) size (um)
(pm)
PF 40% Pluronic F127 Standard bioink 258
GG/GM 1.2% Gellan Gum + 4% GelMA Testing formulation 164
Alg-Lap-RD 1% Alginate + 6% Laponite RD  2"d high printability 140
comparator
Alg-Lap-EP 1% Alginate + 6% Laponite EP Testing formulation 75 84 150 420 330
ALG 7% Alginate Viscose hydrogel 742
MC 8% Methylcellulose Poor shape fidelity 602
HA 3% Hyaluronic Acid Poor shape fidelity 174
C C C f
.' E TE:gr::\eere:r:g
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5-layer Tube (Side View)

PF GGIGM Alg-Lap-RD  Alg-Lap-EP ALG Mmc HA
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5-layer Tube (Top View)

PF GGIGM Alg-Lap-RD  Alg-Lap-EP ALG mc HA

p<0.0001
61 160 £<0.0001
T 5 ] 1404 ' p=0.0014
o
£ = 1201 r p=0.0007 1
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Crosshatch

PF GGIGM Alg-Lap-RD  Alg-Lap-EP ALG mc HA
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4-Angled Pattern

PF GGIGM Alg-Lap-RD  Alg-Lap-EP ALG MC HA

3 mm

N
v
1
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PF
GGI/IGM _ 2.5 ﬁ c PF
E e 1 GGIGM
E 2.0 [ Alg-Lap-RD
Alg-Lap-RD 5 . 3 Alg-Lap-EP
= — I ALG
& T — — Mmc
Alg-Lap-EP “%-’ 1.0 ™ —t— =3 HA
: *
E T
ALG E 0.5 ] n T %
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£ 0 I ﬂ nﬂnﬂ aflanll A afanf o
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Printability Outcomes
Printing conditions
Abbr.
Tube Tube Wall Radial Pr Porcren Filament Uniformit Angle Filament
height width thickness | accuracy width Yy error deflection
PF
+++ +++ +++ +++ +++ +++ +++ +++ +++ +++
(standard)
GG/GM ++ +++ +++ +++ +++ +++ +++ + +++ +
Alg-Lap.RD +++ +4++ +4++ +4++ ++ ++ ++ +++ +4++ +++
Alg-Lap-EP +++ +++ ++ ++ + + ++ +++ +++ ++
ALG + ++ ++ ++ + + +++ +++ + +
MC + + + + n/d n/d n/d n/d n/d +
HA + + + + n/d n/d n/d n/d n/d +
+++ Good; ++ Intermediate; + Poor; n/d: not detectable
oo s . ceiienion
Gillispie et al., under review @ E TE"S'"*”"S
omplex Tissues
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Rheological Properties
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Rheol Printability (Li R Anal )
A) RoSquared = 0.59 B) ReSquared = 0.297 Q) Resquored = 0382
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Rheology vs. Printability (Linear Regression Analysis)

= Gillispie et al., under review

A) R-Squared = 0.017 B) R-Squared = 0.007 C) R-Squared = 0.173
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Rheological Properties vs. Printability

yielding, and recovery properties

Loss modulus (G”) is not predictive of printing outcomes

uniformity

No rheological parameter alone was able to predict relative printability

Rheological measurement is valuable insight into the bioink’s shear-thinning, viscoelastic,

Printing outcomes must be measured directly rather than inferred from rheology

Thus, standardization of printability measurement is essential for bioink development

< Center for
4 Engineering
Complex Tissues

Rheological measures are not predictive of uniformity, except, low G” may be an indicator of poor
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Effect of Cell Density on Printability

5-layer tube Crosshatch
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Gillispie et al., Tisuse Eng 2020
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Effect of Cell Density on Rheological Properties
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Effect of Cell Density on Printability

composite bioink

25

o The effect of cell density on printing outcomes have been investigated in the GelMA/GG

o No effect on printability was seen for cell densities up to 40 x 10° cells/mL

o All bioinks showed similar shear-thinning abilities with analogous K and n constants

o Rheological measures showed some variation between the bioinks with different cell densities.
o Both storage modulus (G’) and loss modulus (G”) increased moderately as cell density increased

o Yield stress showed slight changes, initially increasing as cells were introduced at 5 x 108/mL and
then decreasing from there as cell density increased

o Center for
(g Engineering
Complex Tissues

Design concept

Shape and size

Tissue organization
(alignment, etc.)

Composite tissues
(interface, etc.)

Functional inner
structures
(vasculature,
nephron, etc.)

Tissues or organs

4 Y

Bone

.

Skeletal muscle

Ear Nose

Cardiac muscle

Microvasculature

Nephron

Moroni et al. Nat Rev Mater 2018

Resolution

<400 pm

<200 - 300 pm

<50 - 100 pm

<10 pm

Applications

CECT
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